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Abstract—A driving cycle represents the operating conditions 
of a vehicle as a function of vehicle speed and time. It is used 
for assessment of vehicle energy consumption, tailpipe 
emissions, and driving behavior. A driving cycle depends on a 
vehicle application, geographical regions, and driving zones 
(e.g, urban vs. highway). This paper collects driving data from 
the University of Alberta fleet vehicles and develops a driving 
cycle for fleet vehicles. The driving cycle is generated based on 
the Microtrip combination method. Extraction of the driving 
cycle is based on using the Principal Component Analysis 
method, and developing an algorithm for calculating the 
weights of different parameters using statistical analysis to 
avoid the excessive weighting caused by the similarity of the 
physical meaning of the parameters. The process of combining 
Microtrips into driving cycles is simplified through database 
simplification and is accelerated by designing an algorithm for 
selecting Microtrips. The results are presented for five selected 
university vehicles with same application. The identified 
driving cycle consists of 24.5% Acceleration, 23.9% 
Deceleration, 3.9% Cruising, 47.7% Idling. The resulting 
driving cycle serves as a utility for the development of an 
intelligent fleet management system. 

Keywords-Driving cycle; Microtrips; Principal Component 
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I.  INTRODUCTION 

The University of Alberta manages over 170 fleet vehicles 
(hereafter referred to as the UAlberta fleet vehicles). That 
consume approximately 205,000 liters of fuel annually and thus 
produces 564,291 kg of CO2 greenhouse gas (GHG) per year 
according to the Canada Clean Fuel Standard. The goal is to 
reduce the operation cost and GHG emission from the UAlberta 
fleet vehicles via an intelligent management and selection of 
fleet vehicles. An important need is to determine a representative 
driving cycle of the UAlberta fleet vehicles. This paper aim to 
address this need. 

A driving cycle is a time series that describes the changes in 
the vehicle speed within a certain period of time. Driving cycles 
can be used to (ⅰ) evaluate vehicle performance, especially 
energy consumption and tailpipe emissions, (ⅱ) calibration of 
vehicle control and energy management strategies, (ⅲ) identify 

the optimum powertrain framework and vehicle type for certain 
applications and fleet renewal. 

Some of the existing standard driving cycles for light-duty 
vehicles include Federal Test Procedure cycles FTP 75 and FTP 
72, Supplemental Federal Test Procedure US06, Highway Fuel 
Economy Test (HFET), World harmonized Light-duty vehicles 
Test Procedure (WLTC), and China Light-Duty Vehicle Test 
Cycle (CLTC). These standard driving cycles are derived from 
broad driving condition that are inappropriate to apply to 
UAlberta fleet vehicles. To this end, this paper aims to collect 
extensive vehicle data and design an appropriate driving cycle 
development algorithm for identifying the UAlberta fleet 
vehicles’ driving cycle.  

Common methods to develop driving cycles include the 
Microtrip method [1], clustering method [2], and Markov chain 
method [3]. In this paper, the Microtrip method is used to 
construct the driving cycle since it is less complex to develop 
compared to the Markov method and it is more robust than the 
clustering methods. Microtrip is a fragment between two idle 
driving states in a driving cycle [4]. Selection of settings to 
identify Microtrip is important, because Microtrips are the main 
building blocks of a driving cycle. Abas et al. [5] and 
Sundarkumar et al. [6] proposed defining a Microtrip based on 
vehicle speed and engine speed, respectively. In order to verify 
whether the driving cycle generated by the Microtrip method is 
acceptable, assessing driving parameter metrics that reflect the 
driving characteristics is essential. Xiao et al. [7] and Chugh et 
al. [8] indicated commonly used parameters for evaluating the 
performance of generated driving cycles. After obtaining the key 
parameters, it is essential to quantitatively determine the 
performance of the generated driving cycle through an algorithm. 
Gallo et al. [9] proposed the root mean square (RMS) algorithm 
to quantitatively assess the performance of driving cycles. This 
algorithm is applied in this study. 

The main contributions from this paper include: (ⅰ) vehicle 
instrumentation and collection of extensive vehicle data via a 
cellular network and on board diagnosis (OBD) data loggers, (ⅱ) 
developing a new method to form a weight distribution for 
different parameters of a driving cycle, by mathematically 
expanding the principal component analysis (PCA) algorithm, 
(ⅲ) creating an efficient method to identify a driving cycle by 
simplifying the Microtrip database, and (ⅳ) identifying a driving 
cycle for the university fleet vehicles. 



   

This paper is organized as follows: Section 2 explains the 
vehicle experimental setup. The Driving Cycle Algorithm 
design is described in Section 3. Section 4 showcases the 
simplification of the database and the final driving cycle is 
developed in Section 5. Finally, Section 6 presents the summary 
and conclusions. 

II. VEHICLE EXPERIMENT SETUP  

A. Data Collection 

In this study, Freematics One+ data loggers were used to 
record data from vehicle. As Fig. 1 shows, each vehicle is 
equipped with one OBD data logger that collects vehicle and 
engine information such as vehicle speed and engine speed. 
Using the cellular option, OBD data loggers are able to send 
real time data to our designed data server at UAlberta. In the 
server there are multiple programs which receive and process 
the data into csv file and subsequently store them in the database. 
The data for this study is collected for four months of operation 
from five vehicles. In total, 209,813 data points were obtained. 
The specification of vehicles are shown in Table 1.  

B. Processing and Analysis of Data 

1) Data Resampling: The data obtained by OBD loggers 
sometimes cannot be used directly, due to noise and missing data 
at some time stamps.  The collected data in this study was record 
by 2 Hz sampling frequency. To this end, zero-phase digital filter 
was used and the data was resampled to 1 Hz. 

2) Determine Microtrips: The conventional method of  

 
Fig. 1.  Designed Framework for Collecting Data from UAlberta Fleet Vehicles 

TABLE 1 SPECIFICATION OF THE TESTED VEHICLES IN THE UALBERTA FLEET 

Unit No. Makes Model Year 
Rated 
Power 
(hp) 

Engine 
Size 

(Liters) 

V0429 DODGE RAM 2500 2011 350 5.7 

V0441 FORD E-250 2012 259 4.6 

V0443 FORD E-250 2012 259 4.6 

V0484 CHEVROLET EXPRESS 2014 341 4.8 

V0505 FORD TRANSIT 2016 310 3.7 

constructing driving cycles is by "slicing" recorded driving data 
and combining them according to certain algorithms. Each 
segment "sliced" from the recorded driving data is called a 
Microtrip. A properly constructed Microtrip is the cornerstone 
of a driving cycle. It is necessary to ensure that the information 
flow of a single Microtrip is as complete and independent as 
possible, so that when forming a driving cycle, the information 
flow is not discontinuous. A stop is defined when both vehicle 
speed and engine speed are zero.  To this end, this paper selects 
the trip between two complete stops of a vehicle as the 
Microtrip.  

3) Kinematic Fragments: A Kinematic fragment [10] is a 
meticulous division of driving segments compared to Microtrips. 
It contains acceleration, deceleration, cruise and idle driving 
modes. The criteria to generate Kinematic fragments are 
explained in Table 2. As it shows, the driving segments with a 
certain range of velocity and acceleration are used to determine 
the driving state. This paper considers the idle duration and does 
not consider ultra-short idling (less than 5 seconds) as an idle 
state. An example of kinematic fragments is illustrated in Fig. 2. 
As it shows, each Microtrip consists of multiple Kinematic 
fragments. 

4) Assessment Metrics : Generating a driving cycle is to find 
the driving cycle that best represents the recorded driving data. 
Statistical metrics are used to determine whether the generated 
driving cycle can represent all recorded driving cycles [11]. 
Some of common metrics include the average velocity of a 
driving cycle (Vavg), average velocity of a driving cycle except 
idle (Veavg), average acceleration of a driving cycle (Accavg), 
average deceleration of a driving cycle (Decavg), time spent on 
idling divided by the total time (%Idle), time spent on cruise 
divided by the total time (%Cruise), time spent on acceleration 
divided by the total time (%Acc), time spent on deceleration 
divided by the total time (%Dec), and the number of vehicle 

 
Fig. 2. An Example of Kinematic Fragments in This Study 

TABLE 2 PRINCIPLES UESD FOR KINEMATIC FRAGMENTS  

Kinematic 
State v (km/h) a (m/s2) t (s) Cruise State 

with t<5s 
Idle = 0 - > 0 - 

Cruise > 0 ≥ - 0.15 & ≤0.15 > 5 - 

Acceleration > 0 > 0.15 > 0 V(k+1) > V(k) 

Deceleration > 0 < - 0.15 > 0 V(k+1) < V(k) 



   

stops per kilometer (Stop/km). All driving data recorded by 
OBD are classified according to Table 2 and mentioned metrics. 
The results are shown in Table 3. It can be noted that the average 
speed is significantly lower than that of existing standard driving 
cycles, and there is less cruising driving. 

III. ALGORITHM TO ASSIGN WEIGHTS OF TARGET 

PARAMETERS 

Identification of the driving cycle of the fleet can be 
understood as finding or creating a driving cycle that can 
represent the characteristics of all recorded data as much as 
possible. It is a kind of data mining, so an algorithm is needed to 
test this representativeness.  

The mean square error (RMS) algorithm can be used to 
assess how close the target parameters are compared to each 
proposed driving cycle. Because RMS can amplify the deviation 
error between the sample and the characteristic data, the smaller 
the RMS, the better the sample driving cycle represents the 
overall driving characteristics. RMS is determined by:  

 𝑅𝑀𝑆 = ට∑ (
௫೔ି௫೔.ೌೡ೒

௫೔.ೌೡ೒
)ଶ

௡   (1) 

xi = average target parameter for a candidate drive cycle 

xi.avg = average target parameter for all OBD recorded data 

The RMS does not take into account the weights among 
different parameters, while the importance of different target 
parameter metrics is different. Directly using RMS will make the 
important parameter characteristics insufficiently matched and 
the secondary parameters occupy too much share of the results. 
How to assign appropriate weights among target parameters is 
important. 

PCA is usually used as a dimensionality reduction algorithm 
by using statistical methods to get the correlation among 
parameters. When using PCA, the parameters are not 
distinguished as independent variables and dependent variables; 
thus, all parameters are treated equally. We arranged the 
parameters into an array X and calculated the covariance matrix 
Σ of different parameter arrays. The analysis is then simplified 
by examining arrays in new spaces through mathematical 
transformations, which is shown in Equation (2). 
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 𝑐𝑜𝑣(𝑌௜ , 𝑌௞) = 𝛼௜
் ∑ 𝛼௞ = 0  (3) 

 ‖𝛼௜‖
ଶ = 𝛼௜

்𝛼௜ = 1 (4) 

TABLE 3 UALBERTA FLEET VEHICLES DRIVING CHARACTERISTICS 

Target 
Parameters 

Vavg 
(km/h) 

Veavg 
(km/h) 

Accavg 
(m/s2) 

Decavg 
(m/s2) 

Stop/km 

Value 14.7 21.1 1.9 -2.6 0.5 

Target 
Parameters 

%Acc %Dec %Cruise %Idle 

Value 27.0 32.8 6.4 33.7 

In Equation (2),  𝑎௜௝  represents the value of row "i" and 
column "j" in the covariance matrix Σ. 𝛼௜ in the equation is the 
principal component (PC), which is also the eigenvector 𝒆𝒊 of 
the covariance matrix Σ. Equations (3) and (4) show that the PC 
vectors in the new space are pairwise orthogonal. Moreover, it is 
the orthogonality of this vector that greatly simplifies the 
research difficulty of the problem. We used 𝛼 to get the matrix 
of feature vector 𝐴 as Equation (5): 
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The eigenvector 𝜆௜ is obtained by calculating the variance of 
𝑌௜ from Equations (6) to (8). 

 𝑌௜ = 𝛼௜
்𝑋 (6) 

 𝑣𝑎𝑟(𝑌௜) =  𝑚𝑎𝑥‖𝛼௜‖ = 1𝛼் ∑ 𝛼  

(𝑤𝑖𝑡ℎ 𝛼௜
் ∑ 𝛼௝ = 0)  

(7) 

 𝑣𝑎𝑟(𝑌௜) = 𝛼௜
் ∑ 𝛼௜ = 𝜆௜  (8) 

Next, we divide a single 𝜆௜  by the ∑ 𝜆௜  to get λ௜% and the 
elements of the covariance matrix are divided by the sum of the 
elements in the same column to get 𝑎௜,௝%.  The equations are 
shown in the following. Finally, Equation (11) is obtained that 
yields the matrix of proportional feature vector.  
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By summing of each row of the matrix of proportional 
feature vector 𝐴%, the weight of each parameter is obtained. 

 𝑊௜ =  ∑ 𝑎௜,௝
௣
௝ୀଵ   (12) 

Different from the traditional PCA algorithm, the 
proportional covariance matrix can be used to obtain 
eigenvalues λ௜  for dimensionality reduction in the new space 
and to obtain the weight 𝑊௜  of each parameter. For the 
proportional coefficient matrix, the sum of each column is λ and 
the sum of each row is the weight of each parameter. Fig. 3 
shows the weights for the target parameters.  

Based on the above Equations (1) to (12), the revised RMS 

 
Fig. 3 Selected Weights for the Target Parameters 



   

is determined by: 

 
𝑅𝑀𝑆௥௘௩௜௦௘ௗ = ට∑ (

௫೔ି௫೔.ೌೡ೒

௫೔.ೌೡ೒
)ଶ

௡ ×𝑊௜  (13) 

IV. MICROTRIP DATABASES  

The construction of the driving cycle for the UAlberta fleet 
in this paper faced the problem of excessive number of 
Microtrips. Therefore, it is important to simplify the Microtrip 
database through an algorithm to have an efficient operation. To 
this end, at first Microtrips are divided into several categories, 
and then simplify each category, and finally get a simplified 
database. Through this method of categorizing and simplifying, 
the database can be simplified quickly, and the problem of 
excessive simplification in the simplification process can be 
avoided. 

Average speed is an important parameter to reflect the 
driving state. For example, when the average vehicle speed is 
close to 0, a vehicle is usually at an idle state, and when the 
average speed is high, the vehicle is usually in a cruising state. 
Most of the others are in the aggression driving state, which is 
mainly composed of acceleration and deceleration kinematic 
fragments. Therefore, using the average speed to distinguish the 
Microtrips can let it be classified according to the driving state 
without being too complicated.  

The traditional method of dividing the driving state by the 
average speed is based on evenly divided speed range method. 
However, the driving situation of the UAlberta fleet vehicles is 
very different from that of urban vehicles. This division method 
may lead to uneven distribution of Microtrips in different driving 
state intervals. In this project, if using an evenly divided method 
the result is shown in Table 4. The percentage of Microtrips in 
each speed division is defined as %No in Table 4 and Table 5. 
The %No with an average speed in the range of 0 to 5 km/h is 
9% more than that in the range of 25 km/h to remaining. Such 
division method will lead to that some databases have a large 
number of samples, and those database simplification will miss 
many data information. 

To solve this problem, a driving state division method based 
on number of Microtrip is proposed by Equation (14), where the 
evenly divided Microtrip number (EDMN) method aims to 
minimize the error between the %No and total Microtrip divided 
by the number of intervals. In order to have enough samples for 
each driving state intervals, in this study, it is stipulated that the 
number of Microtrips in each driving state interval cannot be less 
than 300. This leads to 6 driving state intervals listed in Table 5. 
The %No in each interval is not exactly equal, because the 
number of Microtrips cannot be divided by N without leaving a 
remainder, which is also why EDMN is to find the minimum 
error. 

 𝐸𝐷𝑀𝑁 =  𝑚𝑖𝑛 ቀ∑ ቀ%𝑁𝑜 − 
ଵ଴଴

ே
ቁቁ  (14) 

N = number of driving state intervals 

After getting a division of the driving state, RMS and PCA 
from section 4 are applied to get the five most representative 
Microtrips in each driving status interval to simplify the 
Microtrip database. Fig. 4 shows the Microtrip database. In each 

TABLE 4 EVEN DISTRIBUTION OF SPEED FOR FLEET DATA 

Average 
Speed 
Range 
(km/h) 

0～5 6～10 11～15 16～20 21～25 >25 

% No 21.8 15.1 18.8 18.2 13.9 12.0 

TABLE 5 EVEN DISTRIBUTION OF NUMBER OF MICROTRIP FOR FLEET DATA 

Average 
Speed 
Range 
(km/h) 

0～3 4～8 9～13 14～17 18～23 >23 

% No 15.8 14.4 18.2 16.2 18.8 16.7 

driving state categories, the solid lines are the best representative 
Microtrips. The remaining Microtrips are represented by the area 
chart, and the darker the color, the more frequent the driving 
situation in the range appears.  

Fig. 4a shows that most of the Microtrip fragments’ speed in 
this driving state interval is closed to 0 and Fig. 4f shows that 
most of the Microtrip driving state intervals have a large number 
of kinematic fragments in high-speed cruising state compared 
with other situations. This also shows that the theory that the 
driving state can be roughly divided according to the average  

 
(a) 0~3 km/h 

 
(b) 3~8 km/h 

 
(c) 8~13 km/h 



   

 
(d) 13~17 km/h 

 
(e) 17~23 km/h 

 
(f) 23 km/h ~all remaining 

Fig. 4. Microtrip Databases for Each Driving Category  

 
Fig. 5 Weights of Traget Parameters for Microtrip Database 

speed is correct. Fig. 5 shows the weights of target parameters in 
Microtrip database. Each color represents a Microtrip database 
category, and the Microtrip driving state category represented by 
each color is consistent with that in Fig. 4. 

V. CONSTRUCTION OF DRIVE CYCLE 

Based on the Microtrip database from section ⅳ, a driving 
cycle is constructed according to the algorithm illustrated in Fig. 
6. Different from the conventional completely random driving 
cycle construction method [1], which randomly combines 
Microtrips and then judge the performance to determine whether 
it is available. The algorithm in Fig. 6 uses the average speed of 
Microtrips to accelerate the process of generating the driving 
cycle. 

 

Fig. 6 Flowchart of the Designed Algorithm to Construct the Driving Cycle 



   

In the process of combining the Microtrips into a driving 
cycle, because the Microtrip does not include the idle driving 
state, the driving cycle consisting of Microtrips should not 
include the idle driving state. Here, VRavg is used, which is the 
average speed of a driving cycle consisting of Microtrips without 
any inserted idle driving states. Because the idle driving state is 
abandoned during the combination, the total expected driving 
cycle time duration is also reduced, so TimeDesired is used to 
represent the expected driving cycle time without idle driving 
state. TimeDC in the algorithm is the time duration of the 
Microtrip combined driving cycle. 

As Fig. 6 shows, firstly, a Microtrip is randomly selected and 
its VRavg is calculated. If VRavg is equal to Veavg, then the 
algorithm randomly selects a Microtrip from the Microtrip 
database.  If VRavg is larger than Veavg, then the algorithm 
randomly selects the next driving state from the Microtrip 
database for which the speed range is higher than the previously 
selected Microtrip and randomly selects a new Microtrip to 
connect the previous Microtrip, otherwise, the algorithm 
randomly selects the next driving state interval which is lower 
than the previously selected one and keep other steps unchanged. 
The process is then continued until the time is greater than the 
TimeDesired. Next, the RMS of the generated driving cycle is 
calculated, if RMS is greater than 1, the generated driving cycle 
is regarded as an invalid driving cycle; thus, the driving cycle is 
deleted and the process is restarted. Based on the above process, 
the driving cycle except for the idle driving state is obtained.  

For the allocation of idle times, the start and the end idle time 
of the driving cycle are obtained by calculating the average ratio 
of the start and end idle times to the total time from all recorded 
data. The driving cycle’s idle time between Microtrips is the 
total idle time minus the start and end idle time divided by the 
number of Microtrips in the driving cycle. 

The driving cycle time is the average value of all OBD 
recorded driving cycle time. In this study, the cycle time is 1761 
seconds. From all OBD recorded driving cycles, the idle driving 
state time accounted for 33.7% of the total time. Thus, in this 
study, the duration of idle driving state time is 594.6 s. The idle 
time of the driving cycle at the beginning and the end of the total 
driving cycle time are 28.5 s and 39.2 s, respectively. The final 
driving cycle is shown in Fig. 7. RMS is 0.27, which means the 
proposed driving cycle in Fig. 7 can well represent the driving 
characteristics of the tested fleet vehicles. 

 
Fig. 7 Final Driving Cycle for the Tested UAlberta Fleet Vehicles 

VI. SUMMARY AND CONCLUSIONS 

In this study, a driving cycle was determined by collecting 
and analysis of extensive data from the UAlberta fleet vehicles. 
A root mean square algorithm with a weight correction and a 
Microtrip combination algorithm were developed and applied on 
the designed database. The design of optimum weights in the 
RMS algorithm improved the accuracy of the algorithm. In 
addition, the simplification conducted on the database improved 
the efficiency of the designed algorithm. The final driving cycle 
has an average velocity of 12.6 km/h, the maximum velocity of 
52 km/h, with a total duration of 1761 seconds. 

 Future work includes collecting data from fleet vehicles 
with different applications and derive a specific driving cycle for 
each vehicle application, utilizing the algorithm from this study. 
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